
Business Process Verification

Sven Feja, Andreas Speck
Department of Computer Science

Christian-Albrechts-University Kiel
Olshausenstrasse 40, 24098 Kiel, Germany

svfe@informatik.uni-kiel.de, Andreas.Speck@email.uni-kiel.de

Elke Pulvermüller
Department of Mathematics and Computer Science

University of Osnabrück
Albrechtstr. 28, 49076 Osnabrück, Germany

elke.pulvermueller@informatik.uni-osnabrueck.de

Abstract: Models of commercial systems reflect either the statical structure or the
dynamic behavior of a system. The dynamic aspects are the business processes and
their models.

Whereas the static relations in a system may be expressed by Boolean logic, the dy-
namic activities and their temporal sequences ask for a better formalism, e.g. temporal
logic. Temporal logic is based on Boolean logic extended by operators expressing the
temporal order of states. In general there are different technologies to verify temporal
sequences. Our choice is the model checking concept.

In the paper we present examples of business process models and how these mod-
els may be checked. We introduce a model to specify the rules (rules model) and
demonstrate how the results of the checks can be displayed in the business process
models. These models and the rules are represented in a graphical editor. Both mod-
els are transformed into a formal language which may be processed by a verification
tool - a model checker in our case. The results are then visualized in the graphical
editor indicating where the model violates or keeps the rules.

1 Introduction

Workflows and processes are fundamental in computer-based systems. Real-time systems
as well as large scale business systems, for instance, focus on process execution. All
theses systems have in common that their dynamic behavior is the essential element. Even
a simple purchase system has to realize a selling process.

There exist different modeling concepts for the different types of systems, e.g. SDL or the
modeling language Z for time-critical systems or business process models for commercial
systems.

In the paper we focus on business process model types which are typical for commercial
systems: Event-Process Chains (EPCs) [Sch98] which are part of the modeling concept
ARIS (Architecture of integrated Information Systems). This modeling concept has first

being brought up to model large scale ERP systems like SAP R/4. Now EPCs are used to
model almost all kinds of commercial systems. Instead of deriving new (formal) models
from these for verification purposes, we propose to integrate the means which are neces-
sary for a verification into the existing modeling environment. The goal is to provide an
easy-to-understand checking solution for the domain engineer who is usually not a formal
methods expert.

As a real application on which we demonstrate our approach we chose the high-performance
e-commerce system Intershop Enfinity (Intershop Communications AG). This e-commerce
system is used in large scale systems of retailers (e.g. Otto GmbH & Co KG or Quelle
GmbH), in the automotive branch (e.g. Volkswagen AG, MAN AG, BMW AG) or in
e-procurement systems (e.g. run by the German Federal Ministry of the Interior or govern-
ments of other countries or large companies). Taking e-commerce systems as an example
domain has the advantage, that a large number of users are familiar with their basic func-
tionalities, and from a business view perspective e-commerce systems may be considered
as an extension of ERP systems with similar complexity.

The remainder of the introduction provides an overview over the typical steps and models
in the e-commerce requirements modeling. Section 2 outlines related work in the do-
main of requirements verification. Section 3 describes our Temporal Logics Visualization
Framework with its elements (in particular its visual temporal logic language and its visual
error representation) followed by a demonstrating example in section 4 and the conclusion.

Figure 1: Model Types in e-Commerce Systems (ARIS4Enfinity).

1.1 ARIS Modeling Approach for e-Commerce Systems

The ARIS approach supports in general a wide range of applications. Therefore, in this
paper the generic ARIS concept is limited to a specific instance which is more suitable for
e-commerce systems: ARIS4Enfinity.

Figure 1 depicts models in the ARIS4Enfinity modeling approach. In the development of
an Enfinity-based e-commerce system the requirements definition starts with a very ab-
stract overview of the basic scenarios for the functionalities of the system. The model type
used is mainly the value added chain which may capture rough temporal dependencies.
The value added chain models are used as an early description since they are easy to un-
derstand for the customers as well as the developers. However, due to the value added
chain models are kept simple and abstract there is usually little need for an automated
verification.

The EPCs are used to model the business process requirements in detail (c.f. model el-
ements description in section 1.2). The EPC models are ideal for the communication
between the domain experts (economists) and the computer scientists, since they are still
understood by both groups.

The EPC models serve as base for the design of the implementation. In the case of Inter-
shop Enfinity, executable workflow models (called Pipelines) represent the design and are
executed by the system’s application server.

If the domain experts want to check the business processes of an e-commerce system,
this is generally done on the level of EPC models. Therefore, business rules, regulations
and system specific requirements which have to be implemented by the system are to be
both, expressed and verified on this business process (EPC) level. If the EPC models do
not represent the requirements correctly then the resulting system will hardly meet the
needs. Therefore it is essential to verify the requirement description represented by the
EPC models.

1.2 EPC Model Elements

As mentioned above the EPC model is part of the modeling concept ARIS as well as
the specific profile for the development of Enfinity systems ARIS4Enfinity [Bre02]. The
basic elements of an EPC model are shown in figure 1 (in the middle): The control flow
is symbolized by a sequence of events (magenta/violet hexagons) and functions (green
rectangles with rounded edges) which are connected by arrows representing the control
flow. Branches in the control flow are defined by the Boolean logic operators: AND,
OR and XOR. In the figure an XOR is depicted (the circle with a cross in the middle).
AND requires that all paths of the branch are active. OR indicates that at least one path is
used. XOR allows that one and only one path is chosen. We ignore further elements like
organizational elements (depicted in figure 1 for Buyer or Seller).

2 Related Work

In our work we propose the integration of means to verify requirements directly into the
development and requirements models. This way, the gap between domain knowledge
and formal methods expertise may be reduced. All parts are on the same abstraction

level. Related work may be found in the field of requirements specification. A compar-
ison of requirements elicitation and specification/definition methodologies can be found
in [PO98],[EK04]. According to [EK04], the use of formal and automatic methods is
”the least ambiguous requirements representation allowing for automatic verification tech-
niques”. A push-button formal technique to verify the fulfillment of automata-based spec-
ifications is model checking [CGP01]. It uses (temporal) logics as specification language
and checks these (temporal) requirements against a model. As opposed to other formal
approaches (e.g. theorem provers) it is more restricted in what can be verified leading, on
the other hand, to the advantage of a developer-friendly extensive automatization.

The usage of model checking requires the input of formal specification formulas/rules and
finite state machine models. Therefore, any input needs to be transformed to such a formal
format. The core idea of our approach is similar to the idea of Model-Driven Software De-
velopment [VS06]. High-level platform independent models are successively transformed
to lower-level platform dependent models. While there exist other approaches to realize
such transformations from higher abstraction levels to formal models for the purpose of
verification [DP02], [SPJF02] we, in particular, propose to raise the abstraction level of
the rules and error representation in addition. The rules the requirements models have to
fulfill are expressed on the same (higher, visual) abstraction level as the business process
models. The path to raise the abstraction level of models, rules and error representation
may also be found in [CDH+00] and [HD01], for instance. However, in this work the
abstraction level is still on the programming language level while we aim at even higher
business process model levels. Beyond verification, the domain of model-driven testing
may be considered as related to our work (e.g. [BDG+07]).

Other interesting approaches to raise the abstraction level of the rules may be found in
mapping natural language to formal descriptions as well as in visualizing requirements
and rule models. For instance, [CDHR02] provides temporal logic patterns to ease the
mapping of natural language to temporal formulas. The visualization of requirements
is well known in hardware related development domains and gets increasing attention
in the software development as well. For instance, a visualization of requirements in
UML models may be found in [KGLC06, Kon06]. The components used are SPIDER
[KC05], Hydra [MC01] and Theseus [GCKK06a]. The main principle is to derive a UML
model from requirements which are specified in natural language. However, UML is not
generally accepted by business process engineers. Therefore, the usage of business process
models like EPC or BPMN [OMG06] and visual requirements specification for these is
needed.

Besides a user-friendly representation of the models together with their corresponding
verification tasks it is necessary to process such extended models. As opposed to our top-
down approach related work may be found in [Pul09], for instance. There, formal models
are extended in a bottom-up manner to increase the expressiveness of low-level formal
models and, thus, to decrease the gap between developer models and verification models.

3 Business Process Modeling

In our terms, modeling of requirements means the usage of a (temporal) logic to specify
requirements graphically. This visualization allows to formulate the requirements for pro-
cesses on the same level of abstraction as the models. Given specification properties which
are typically difficult to understand and available in a textual format, we have to deal with
the challenge to provide corresponding graphical models for them. We solve this task by
means of the Temporal Logics Visualization Framework (TLVF). Section 3.1 gives a short
overview of the Framework. More details of the TLVF may be found in [FF08].

Section 3.2 provides our approach of interpreting validation errors. Additionally, the de-
velopment of adaptation advices for some major types of specifications is explained. Fi-
nally, section 3.2 explains the visualization of validation errors and adaptation advice in
the original process model.

3.1 Temporal Logics Visualization Framework – TLVF

The purpose of TLVF is to deliver all required means for the visualization of temporal
logics in union with a process model or workflow. As shown in figure 2 the framework
is divided in three layers. The first aggregates the logics (the bottom layer). The second
defines the graphical symbols for each operator of a logic and the third layer provides the
process model, the graphical rules definition and the required transformation tasks.

Temporal Logics

Operator SymbolsOperator Symbols
Layer

Temporal Logics
Layer

Integrated Process
Model Layer

Tr
an

s-
fo

rm
at

io
n

C
om

po
ne

nt

P
ro

ce
ss

M

od
el

C
om

po
ne

nt

G
ra

ph
ic

al
Va

lid
at

io
n

R
ul

es
C

om
po

ne
nt

Figure 2: Temporal Logics Visualization Framework.

With these layers is it possible to state graphical rules of any logics (e. g. CTL and LTL)
in union with desired process models (e. g. EPC or BPM). Moreover, the transformation
of the process model and the graphical rules to an appropriate format for different model
checkers is provided.

A graphical logic is defined by its operator symbols and a so called placeholder. The
operator symbols are the corresponding graphical representation of the textual operators
(e. g. quantifiers and Boolean operators). For a rule definition with these symbols the
connection to a process model is needed. Therefore, the placeholder can be filled with an
appropriate process model element. The general definition of Graphical CTL (G-CTL) is
depicted in figure 3.

EXISTS FOR ALL

EX a

EG a

AX a

AG a

EF a AF a

E(aUb) A(aUb)

a

a

a

a

a

a

U baU ba

T

F

True

False

Boolean Operators

Figure 3: Symbols of G-CTL.

3.2 Validation of Business Process Models

The business process models (EPC models) are checked against specifications models (G-
CTL). If the checking result is positive then there is no need for any further activity. When
an error is detected we must display this error in a way the users can easily understand.
Although the checking technology we apply – model checking – is very powerful, in case
of an error a model checker simply presents a counter example [CGMZ95] (and in case
that more than one specification is checked the specification violated is presented as well).

The information that a specific rule is not satisfied determines the process paths which
need to be examined. One of these paths is the counter example a current model checker
can deliver. However, as mentioned above, a model checker typically only delivers one
counter example. Our approach uses this counter example to visualize it in the process
model, as described in the following subsections.

The visualization of violated rules in a process model can be achieved on different ways.
One would be the visualization of all witness scenarios in the terms of the original model.
This was done for UML models in [KGLC06]. A second way is the presentation of the
counter example in terms of the original model as in [GCKK06b] where it is achieved by
generating a sequence diagram of the problem scenario.

In contrast to [KGLC06] and [GCKK06b] our approach presents the results of the vali-
dation in the original process model. Additionally, it is possible to offer direct advices
for error correction in case of a validation error. This is achieved by an automatic inter-
pretation and visualization of the validation error. The following sections 3.2.1 and 3.2.2

explain how the interpretation and visualization of validation errors can be accomplished.

3.2.1 Interpretation of Validation Errors

The interpretation is based on the validation errors which in our case are delivered by a
model checker. In case of a validation error a model checker gives a counter example
which describes a state of error of the model.

To provide adaptation advices for process models in case of validation errors the inter-
pretation of the rule causing the error is needed. A complete interpretation of validation
errors would require to regard all possible specification rules. An approach we use is to
focus on often used specifications. [DAC98] has proposed so called specification patterns.
These patterns are derived from the analysis of property specifications 1. A full list of the
property specification may be found in [DAC09].

The three important specification patterns we identified for the validation of business
process models are: the Response, Universality and Absence pattern. The survey of
[DAC98] shows that 80% of the regarded specification properties are stated according to
these three patterns. For this reason, we have decided to describe our approach of visu-
alizing violations delivered by a model checker with these three types of patterns. The
patterns are defined by [DAC98] as follows (in falling occurrence):

• Response A state/event P must always be followed by a state/event Q within a scope.

• Universality A given state/event occurs throughout a scope.

• Absence A given state/event does not occur within a scope.

These types of rules can be expressed in CTL as follows:

1. Response AG(P --> AF (S))

2. Universality AG(P)

3. Absence AG(NOT P)

In this paper we only use these simple CTL formulas for interpretation. In future, we will
extend our interpretations to more complex formulas as defined in [DAC98] and [DAC09].
The interpretation of this subset of rules can be done in terms of process models.

Now, the interpretation of this subset of rules is possible.

AG (P --> AF (S)) The process element S has to occur in a process step start-
ing with P.

1Furthermore, they have been tested in a survey with over 500 property specifications. The properties are col-
lected from a wide variety of application areas. Some areas which are important for this paper are communication
protocols, GUIs, control systems or distributed object systems.

AG (P) The process element P has to occur in every process step.

AG (NOT P) The occurrence of process element P is forbidden in every process step.

The advice is given in terms of the original process model. For example, if the rule
AG (Authorization is required

--> AF (Approval request) --> AF (Approval decision evaluation)) is not ful-
filled by a model the advice would be:

The event Authorization is required must be followed by the function Approval request must be
followed by the function Approval decision evaluation in every subsequent process path.

This advice is given in a textbox as shown in figure 8 for the example process of section 4.
This textbox is directly connected to the frame of the erroneous path. This enables the
process modeler to focus on the validation problem instead of browsing the whole process
models.

P

AX

TLQL

VV

V

P

XA

Q T L

P

AX

TLQL

Simplified EPC process Kripke Structure
of the paths of EPC

VV

V

P

XA

Q T L

state 0

state 1

state 2

VV

V

P

XA

Q T L

state 0

state 1

state 2

Visualized process paths

Figure 4: Visualization of paths.

3.2.2 Visualization of Validation Errors

The main task of the visualization of validation errors is to highlight every erroneous path
in the original process model. In addition, if it is possible an advice for a highlighted erro-
neous path is given. An advice is possible if the regarded specification property matches
one of the three specification patterns (Response, Universality and Absence). Figure 4
presents the visualization approach 2 as whole. The transformation of a simplified EPC
process to a Kripke Structure is depicted on the left and middle of figure 4. Two possible
paths of the EPC are shown as shaded elements in the Kripke Structure.

2The notation of the EPC is the one used by our developed editor.

The visualization of the different paths in the editor is shown on the right of figure 4. The
frames of the process elements and arrows of a specific path are recolored in red. The
advices are given in text boxes when selecting a erroneous path. In addition, for a better
understanding of the states of the systems the process models are split by dashed lines.
With this it is easier to locate the process elements belonging to a state. Furthermore, this
supports the understanding and adjustment of the process model.

4 Example Process

Figure 5 depicts a typical, but rather small example of a (sub-) business process (named Or-
der finalization process) as defined in the analysis phase of a project. The model describes
the approval functionality in an e-procurement system modeled as EPC. This model is one
small sub-process out of a set of some tens to several hundreds of such sub-processes (the
number depends on the complexity of the system), which represent the complete business
process description.

��������

�

� �

���

��	��

���
��
�������	

��	��

���
��
��������	

��	��

���
��
����������
��������	

�������
�������
��	��

��	��
�����������
�
��������	

������
�����������

������
��	��

������������
�
����

������	

��	
�

�������	

������
������
�����

������������
�

������	

��������
�����

�����
�
����
�
�������	

�����
�
����
�����
�������	

����
�����
��!

���

�����
�
�����������
�
���������

����
������

�����
�
����
�

������
!���

�����
��!

"���
�����
��!
������	

������
��������!

��	��

#��������!
��	��

������	

������
��$
��	��

%�$�
��	����

������	

������
�&���

�����
�

�&���

�����
�
������	

�����
#'(

�����

�����
�

�������	

Figure 5: Example: Approval Procedure in the Order finalization process of an e-Procurement Sys-
tem.

When a tool – like TLVF (Temporal Logics Visualization Framework, c.f. section 3.1) – is
used each of these sub-models is developed in a screen page of its own. Other tools similar
to TLVF (but without integrated rule representation, though) realize the connections in-
between these sub-models as hyperlinks.

In the e-commerce system domain there exist business rules (as in most other domains)
to which the requirements models have to keep to. In most cases these rules are based on
experience or legal regulations. Some examples for such rules are:

1. An order is always to be completed by the payment and the order confirmation. This
seems to be simple. However, when a large number of sub-models are developed
there is a certain risk, that there might occasionally exist a path which bypasses the
payment. Maybe the payment procedure is bypassed for testing purposes.

2. If the condition that an Authorization is required exists then the next step is the
Approval Process.

3. If the condition that an Authorization is required exists then specific functions in the
sub-process Approval Process must exist.

The first example is a simple check if all paths contain the payment function. This problem
may also be detected by a manual check. However, an automated check may save time
and is less error-prone. Below in this paper we focus on the verification of the second and
third example since they point to some typical problems.

������
�	�
���

�����������
��

��������

�������
������

Figure 6: Temporal Rule 3: Graphical G-CTL Representation.

4.1 Checking a Process

One problem is that the completeness of the requirements model has to be ensured. In
our example we want to verify that when Authorization is required the function Confirm
authorization (implicitly followed by an approval process) is executed next. This is a
typical business rule given in a requirements document.

The graphical version of this term as proposed in G-CTL is depicted in the figure 6. The
CTL formula is shown at the bottom of the figure.

In case the verification fails (i.e. that the Approval process does not follow directly the
event Authorization is required), it is obvious that the sub-process Approval process is
missing after the event. The verifier then may recommend to insert Approval process. This
recommendation is based on domain specific knowledge (or the rule itself, respectively).

�������	
����
��

������

������
�
�����

������
�
�������
�
��
����

�������

�������	
����
��

������

������
�
������

�����
�
�����

������

�����
�
���������

������

������
�
�������
�
��
����

������
�
�������
�
�

������
�
�����

����
���
��	
����
������

����
���
��	
����
������

�����������������
�����������	
������������������� �������
��������

���� �������
�����������
��
����! "��������������
��#���������������

Figure 7: Checking Functions in the sub-process Approval process.

4.2 Checking Details in a Sub-Process

Another problem to represent and deal with rules is that only parts (as sub-processes) of
a large business process are usually visualized on one window by graphical tools. The
hyperlinks indicate that there is a connection to another part of the process which is not
shown in detail (hidden). With this technique the models may be nested and connections
to neighboring parts of the processes are indicated.

Figure 7 depicts the rule to be verified as well as the (sub-)process models (as hyperlink
and inflated).

This concept allows human users to keep the overview. However, for checking purposes
it is necessary also to be aware of the details. The automated checking concept proposed
in this paper supports the complete verification. The checker will check the complete
process regardless how the sub-processes are distributed on the different windows. Hence
the details of a hidden subprocess may also be considered and checked. We can check that
the function Approval request and later the function Approval decision evaluation are part
of Approval process which is initiated by the event Authorization is required.

4.3 Detection and Presentation of Errors

In case the G-CTL is fulfilled there is no need for extra information. The model visualiza-
tion will not be changed. When an error occurs, however, the model checking tool presents
a counter example. This counter example helps to identify the error.

Approval
decision
made

Approval
request

Order
finalization

process

Order
finalization

process

Error case:
Marking of elements

The event Authorization is required must be
followed by the function Approval request must be
followed by the function Approval decision evaluation
in every subsequent process path.

Figure 8: Error: Approval decision evaluation is missing.

The TLVF now interprets the counter example and displays the location in the path where
the error occurs. In many cases this error description is suitable to correct the error.

In our case (depicted in figure 8) the function Approval decision evaluation is missing in
the sequence. The text in the parallelogram describes the violated rule. The location of the
error is marked with red lines surrounding the shapes of the misplaced functions and events
as well as the control flow connecting these functions and events. This marking helps the
user to identify the error and its location. The markings are realized be interpretation of
the results of the model checking run.

5 Conclusion and Future Work

The Temporal Logics Visualization Framework (TLVF) enables a visual modeling and
validation of temporal requirements. For business process development (e.g. e-commerce
systems) it is essential to bridge the gap of the domain expert (and the domain rules like
business rules to be considered by the requirements models) and the low-level verification
viewpoint. Our work contributes in this task by providing a graphical logic language based

on CTL (G-CTL) as well as means to visualize validation errors. In particular, both parts
are integrated in the EPC modeling language which is frequently used for business process
modeling.

Besides the pure verification of the EPC business process requirements models of the
results of the checking are displayed graphically in the Temporal Logics Visualization
Framework (TLVF). Moreover, the checking system can not only mark the error, it may
also recommend solutions. Simple solutions result from the temporal logic applied. More
complex solutions, e.g. complete missing sequences depend on the application domain and
have to be stored in repositories. Both features improve the applicability of such analysis
concepts thereby helping to minimize the errors in the requirements documents.

Further work has to be carried out to support different viewpoints on the models. The do-
main expert should be able to select different abstraction levels and views on the business
process model to reason about requirements.

Another improvement may be to apply our CoV (Component Verifier) model checker
[Pul06] instead of the (currently used) model checker SMV. The CoV model checker is
a symbolic model checker prototype particularly aiming at reducing the gap between low-
level formal models and higher-level component-oriented software systems neglecting fur-
ther consideration of performance optimization.

References

[BDG+07] Paul Baker, Zhen Ru Dai, Jens Grabowski, Øystein Haugen, Ina Schieferdecker, and
Clay Williams. Model-Driven Testing: Using the UML Testing Profile. Springer,
Berlin, 1 edition, 2007.

[Bre02] Michael Breitling. Business Consulting, Service Packages & Benefits. Technical
report, Intershop Customer Services, Jena, 2002.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Păsăreanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models from
Java source code. In ICSE ’00: Proceedings of the 22nd international conference on
Software engineering, pages 439–448, New York, NY, USA, 2000. ACM.

[CDHR02] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Expressing Check-
able Properties of Dynamic Systems: The Bandera Specification Language. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 4(1):34–56, 2002.

[CGMZ95] Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and Xudong Zhao. Effi-
cient generation of counterexamples and witnesses in symbolic model checking. In
DAC ’95: Proceedings of the 32nd ACM/IEEE conference on Design automation,
pages 427–432, New York, NY, USA, 1995. ACM.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts; London, England, 3 edition, 2001.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification
patterns for finite-state verification. In Proceedings of the Second Workshop on Formal
Methods in Software Practice, pages 7–15. ACM Press, 1998.

[DAC09] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. A System of Specifi-
cation Patterns. http://santos.cis.ksu.edu/spec-patterns/, February 2009.

[DP02] Daniel C. DuVarney and Iyer S. Purushothaman. C Wolf - A Toolset for Extracting
Models from C Programs. In Doron A. Peled and Moshe Y. Vardi, editors, Internation
Conference on Formal Techniques for Networked and Distributed Systems (FORTE),
volume 2529 of Lecture Notes in Compter Science, pages 260–275. Springer Verlag,
2002.

[EK04] M. Jose Escalona and Nora Koch. REQUIREMENTS ENGINEERING FOR WEB
APPLICATIONS – A COMPARATIVE STUDY. Journal of Web Engineering,
2(3):192–212, 2004.

[FF08] Sven Feja and Daniel Fötsch. Model Checking with Graphical Validation Rules. In
15th IEEE International Conference on the Engineering of Computer-Based Systems
(ECBS 2008), Belfast, NI, GB, pages 117–125. IEEE Computer Society, April 2008.

[GCKK06a] Heather Goldsby, Betty H. C. Cheng, Sascha Konrad, and Stephane Kamdoum. A
Visualization Framework for the Modeling and Formal Analysis of High Assurance
Systems. In Proceedings of the ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems, Genova, Italy, October 2006.

[GCKK06b] Heather Goldsby, Betty H.C. Cheng, Sascha Konrad, and Stephane Kamdoum. En-
abling a Roundtrip Engineering Process for the Modeling and Analysis of Embedded
Systems. In Proceedings of the ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS 2006), Genova, Italy, October 2006.

[HD01] John Hatcliff and Matthew B. Dwyer. Using the Bandera Tool Set to Model-Check
Properties of Concurrent Java Software. In Kim G. Larsen and Mogens Nielsen, edi-
tors, Proceedings of the 12th International Conference on Concurrency Theory (CON-
CUR), number 2154 in Lecture Notes in Computer Science, pages 39–58. Springer,
Denmark 2001.

[KC05] Sascha Konrad and Betty H. C. Cheng. Facilitating the Construction of Specification
Pattern-based Properties. In RE ’05: Proceedings of the 13th IEEE International
Conference on Requirements Engineering, pages 329–338, Washington, DC, USA,
2005. IEEE Computer Society.

[KGLC06] Sascha Konrad, Heather Goldsby, Karli Lopez, and Betty H. C. Cheng. Visualizing
Requirements in UML Models. In REV ’06: Proceedings of the 1st international
workshop on Requirements Engineering Visualization, page 1, Washington, DC, USA,
2006. IEEE Computer Society.

[Kon06] Sascha Konrad. Model-driven Development and Analysis of High Assurance Systems.
PhD thesis, Michigan State University, East Lansing, MI, October 2006.

[MC01] William E. McUmber and Betty H. C. Cheng. A general framework for formalizing
UML with formal languages. In ICSE ’01: Proceedings of the 23rd International
Conference on Software Engineering, pages 433–442, Washington, DC, USA, 2001.
IEEE Computer Society.

[OMG06] OMG. Business Process Modeling Notation (BPMN) Specification. Technical report,
Object Management Group (OMG), Februar 2006. http://www.omg.org/docs/dtc/06-
02-01.pdf.

[PO98] Paul W. Parry and Mehmet B. Özcan. The Application of Visualisation to Require-
ments Engineering, 1998.

[Pul06] Elke Pulvermüller. Verifikation von Komponenten-basierten Systemen auf Basis
eines erweiterten temporalen Verifikationsverfahrens. PhD thesis, Friedrich-Schiller-
Universität Jena, January 2006.

[Pul09] Elke Pulvermüller. Reducing the Gap between Verification Models and Software De-
velopment Models. In Proceedings of the 8th International Conference on New Soft-
ware Methodologies, Tools, and Techniques (SoMeT 09). IOS Press, September 2009.
To appear.

[Sch98] August-Wilhem Scheer. ARIS - Modellierungsmethoden, Metamodelle, Awendungen.
Springer, Berlin, 1998.

[SPJF02] Andreas Speck, Elke Pulvermüller, Michael Jerger, and Bogdan Franczyk. Component
Composition Validation. International Journal of Applied Mathematics and Computer
Science, 12(4):581 – 589, December 2002.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development : Technology,
Engineering, Management. John Wiley & Sons, June 2006.

